Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Atmos Environ (1994) ; 246: 118103, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-967750

ABSTRACT

China's lockdown to control COVID-19 brought significant declines in air pollutant emissions, but haze was still a serious problem in North China Plain (NCP) during late-January to mid-February of 2020. We seek the potential causes for the poor air quality in NCP combining satellite data, ground measurements and model analyses. Efforts to constrain COVID-19 result in a drop-off of primary gaseous pollutants, e.g., -42.4% for surface nitrogen dioxide (NO2) and -38.9% for tropospheric NO2 column, but fine particulate matter (PM25) still remains high and ozone (O3) even increases sharply (+84.1%). Stagnant weather during COVID-19 outbreak, e.g., persistent low wind speed, frequent temperature inversion and wind convergence, is one of the major drivers for the poor air quality in NCP. The surface PM2.5 levels vary between -12.9~+15.1% in NCP driven by the varying climate conditions between the years 2000 and 2020. Besides, the persistent PM2.5 pollution might be maintained by the still intensive industrial and residential emissions (primary PM2.5), and increased atmospheric oxidants (+26.1% for ozone and +29.4% for hydroxyl radical) in response to the NO2 decline (secondary PM2.5). Further understanding the nonlinear response between atmospheric secondary aerosols and NOx emissions is meaningful to cope with the emerging air pollution problems in China.

2.
Sci Total Environ ; 754: 142227, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-747997

ABSTRACT

Compared with the 21-year climatological mean over the same period during 2000-2020, the aerosol optical depth (AOD) and Angstrom exponent (AE) during the COVID-19 lockdown (January 24-February 29, 2020) decreased and increased, respectively, in most regions of Central-Eastern China (CEC). The AOD (AE) values decreased (increased) by 39.2% (29.4%) and 31.0% (45.3%) in Hubei and Wuhan, respectively, because of the rigorous restrictions. These inverse changes reflected the reduction of total aerosols in the air and the contribution of the increase in fine-mode particles during the lockdown. The surface PM2.5 had a distinct spatial distribution over CEC during the lockdown, with high concentrations in North China and East China. In particular, relatively high PM2.5 concentrations were notable in the lower flatlands of Hubei Province in Central China, where six PM2.5 pollution events were identified during the lockdown. Using the observation data and model simulations, we found that 50% of the pollution episodes were associated with the long-range transport of air pollutants from upstream CEC source regions, which then converged in the downstream Hubei receptor region. However, local pollution was dominant for the remaining episodes because of stagnant meteorological conditions. The long-range transport of air pollutants substantially contributed to PM2.5 pollution in Hubei, reflecting the exceptional importance of meteorology in regional air quality in China.


Subject(s)
Air Pollutants , Air Pollution , Coronavirus Infections , Pandemics , Pneumonia, Viral , Air Pollutants/analysis , Air Pollution/analysis , Betacoronavirus , COVID-19 , China , Cities , Environmental Monitoring , Humans , Meteorology , Particulate Matter/analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL